Histopathological Effects of Mangosteen (Garcinia mangostana L.) Peel Decoction on Betta Fish (Betta sp.) Liver
Main Article Content
Abstract
Mangosteen (Garcinia mangostana L.) peel contains bioactive compounds known for their health benefits, yet potential toxicity at certain doses remains a concern. This study evaluates the histopathological effects of mangosteen peel decoction on the liver of Betta fish (Betta sp.), a sensitive model organism. Mangosteen peel decoction was prepared and administered to Betta fish at concentrations of 5, 25, and 50 ppm, with a control group receiving no treatment. Fish were observed for changes in swimming activity and appetite over five days. Liver tissues were collected, processed, and analyzed histologically to assess tissue damage including vacuolization, pyknosis, hemorrhage, and necrosis. Data were analyzed using the Kruskal-Wallis and Mann-Whitney tests. Behavioral analysis indicated a dose-dependent reduction in swimming activity and appetite in treated groups. Histopathological examination revealed significant liver damage across all treatment groups, with higher concentrations of decoction correlating with increased hemorrhage, pyknosis, and necrosis. Vacuolization was highest in the control group and lowest in the 50-ppm group. The overall hepatic damage was categorized as moderate, with the control group showing the least damage. Mangosteen peel decoction induced significant hepatic damage in Betta fish, highlighting the cytotoxic effects at higher doses. The observed behavioral and histopathological changes underscore the need for careful consideration of decoction concentrations to avoid adverse effects in aquatic organisms. This study provides crucial insights into the toxicological impacts of mangosteen peel decoction on fish liver health, emphasizing the importance of dose regulation in practical applications. Further research is recommended to explore protective measures and alternative treatments to mitigate liver damage.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Cahya, B., Nirmala, D., & Triantoro, B. (2023). Testing the antibacterial effectiveness of mangosteen peel extract (Garcinia mangostana L) against Aeromonas hydrophila Bacterial infection in dumbo catfish (Clarias gariepinus). IOP Conference Series: Earth and Environmental Science, 1273(1), 012024. https://doi.org/10.1088/1755-1315/1273/1/012024
Capela, R., Garric, J., Castro, L. F. C., & Santos, M. M. (2020). Embryo bioassays with aquatic animals for toxicity testing and hazard assessment of emerging pollutants: A review. Science of The Total Environment, 705, 135740. https://doi.org/10.1016/j.scitotenv.2019.135740
Dewanti, A. I. A., Kunjirika, T. P., Putri, R. R. R. A. D., Adaninggar, A., Raharjeng, A. R. P., Retnoaji, B., Nuriliani, A., Sofyantoro, F., Septriani, N. I., & Saragih, H. T. S. S. G. (2023). Effects of Paracetamol on the Development of Zebrafish (Danio rerio). Pertanika Journal of Tropical Agricultural Science, 46(4), 1173–1188. https://doi.org/10.47836/pjtas.46.4.06
Gerry, S. P., & Ellerby, D. J. (2014). Resolving Shifting Patterns of Muscle Energy Use in Swimming Fish. PLoS ONE, 9(8), e106030. https://doi.org/10.1371/journal.pone.0106030
Gibson-Corley, K. N., Olivier, A. K., & Meyerholz, D. K. (2013). Principles for Valid Histopathologic Scoring in Research. Veterinary Pathology, 50(6), 1007–1015. https://doi.org/10.1177/0300985813485099
Golstein, P., & Kroemer, G. (2007). Cell death by necrosis: Towards a molecular definition. Trends in Biochemical Sciences, 32(1), 37–43. https://doi.org/10.1016/j.tibs.2006.11.001
Hosack, T., Damry, D., & Biswas, S. (2023). Drug-induced liver injury: A comprehensive review. Therapeutic Advances in Gastroenterology, 16, 175628482311634. https://doi.org/10.1177/17562848231163410
Hou, L., Liu, K., Li, Y., Ma, S., Ji, X., & Liu, L. (2016). Necrotic pyknosis is a morphologically and biochemically distinct event from apoptotic pyknosis. Journal of Cell Science, jcs.184374. https://doi.org/10.1242/jcs.184374
Ibrahim, M. Y., Hashim, N. M., Mariod, A. A., Mohan, S., Abdulla, M. A., Abdelwahab, S. I., & Arbab, I. A. (2016). α-Mangostin from Garcinia mangostana Linn: An updated review of its pharmacological properties. Arabian Journal of Chemistry, 9(3), 317–329. https://doi.org/10.1016/j.arabjc.2014.02.011
Khasanah, L. U., Paramita, P., & Retnoaji, B. (2024). Mangosteen (Garcinia mangostana L.) Peel Decoction Effect on Embryological Development of Wader Pari Fish Rasbora lateristriata (Bleeker, 1854). Journal of Tropical Biodiversity and Biotechnology, 9(2), 80645. https://doi.org/10.22146/jtbb.80645
Krewski, D., Andersen, M. E., Tyshenko, M. G., Krishnan, K., Hartung, T., Boekelheide, K., Wambaugh, J. F., Jones, D., Whelan, M., Thomas, R., Yauk, C., Barton-Maclaren, T., & Cote, I. (2020). Toxicity testing in the 21st century: Progress in the past decade and future perspectives. Archives of Toxicology, 94(1), 1–58. https://doi.org/10.1007/s00204-019-02613-4
Leung, L., Kalgutkar, A. S., & Obach, R. S. (2012). Metabolic activation in drug-induced liver injury. Drug Metabolism Reviews, 44(1), 18–33. https://doi.org/10.3109/03602532.2011.605791
Lichak, M. R., Barber, J. R., Kwon, Y. M., Francis, K. X., & Bendesky, A. (2022). Care and Use of Siamese Fighting Fish ( Betta Splendens ) for Research. Comparative Medicine, 72(3), 169–180. https://doi.org/10.30802/AALAS-CM-22-000051
Michalopoulos, G. K., & Bhushan, B. (2021). Liver regeneration: Biological and pathological mechanisms and implications. Nature Reviews Gastroenterology & Hepatology, 18(1), 40–55. https://doi.org/10.1038/s41575-020-0342-4
Nie, L.-J., Cao, Z.-D., & Fu, S.-J. (2017). Digesting or swimming? Integration of the postprandial metabolism, behavior and locomotion in a frequently foraging fish. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 204, 205–210. https://doi.org/10.1016/j.cbpa.2016.12.007
Obolskiy, D., Pischel, I., Siriwatanametanon, N., & Heinrich, M. (2009). Garcinia mangostana L.: A phytochemical and pharmacological review. Phytotherapy Research, 23(8), 1047–1065. https://doi.org/10.1002/ptr.2730
Oliveira, J. A., Da Silva Souza, J. G., De Jesus Paula, D. A., Carmo Rodrigues Virote, B. D., & Murgas, L. D. S. (2022). Oxytocin reduces the frequency of aggressive behaviours in male betta fish (Betta splendens). Behavioural Processes, 200, 104689. https://doi.org/10.1016/j.beproc.2022.104689
Palmiotti, A., Lichak, M. R., Shih, P.-Y., Kwon, Y. M., & Bendesky, A. (2023). Genetic manipulation of betta fish. Frontiers in Genome Editing, 5, 1167093. https://doi.org/10.3389/fgeed.2023.1167093
Pham, P. H., Babujee, A., Papazotos, F., & Bols, N. C. (2016). Evaluating the potential role of vacuolization in enhancing or interfering with fish virus detection and replication. Fish & Shellfish Immunology, 53, 107. https://doi.org/10.1016/j.fsi.2016.04.071
Retnoaji, B., Nurhidayat, L., Pratama, S. F., Anshori, K., Hananya, A., Sofyantoro, F., & Bessho, Y. (2023). Embryonic development of Indonesian native fish yellow rasbora (Rasbora lateristriata). Journal of King Saud University - Science, 35(7), 102810. https://doi.org/10.1016/j.jksus.2023.102810
Retnoaji, B., Paramita, P., & Khasanah, L. U. (2023). Mangosteen Garcinia mangostana L. simplicia effect on bone structure and behaviour of Wader Fish Rasbora lateristriata (Bleeker, 1854) Embryo. Indonesian Journal of Pharmacy. https://doi.org/10.22146/ijp.6348
Saraswathy, S. U. P., Lalitha, L. C. P., Rahim, S., Gopinath, C., Haleema, S., SarojiniAmma, S., & Aboul-Enein, H. Y. (2022). A Review on Synthetic and Pharmacological Potential of Compounds Isolated from Garcinia mangostana Linn. Phytomedicine Plus, 2(2), 100253. https://doi.org/10.1016/j.phyplu.2022.100253
Septriani, N. I., Saribu, R. L. C. D., Apriliyani, T., Karlina, I., Pusparini, N. A. O., Zusrina, L. M., Sari, R. V. S., Allimi, H. S., Supraitno, M. E., Saeed, F., Simanungkalit, E. E., Paramita, P., Retnoaji, B., Sofyantoro, F., & Wijayanti, N. (2023). Histopathological evaluation of hepatic tissue of yellow Rasbora (Rasbora lateristriata) exposed to paracetamol. Biological Environment and Pollution, 3(1), 8–14. https://doi.org/10.31763/bioenvipo.v3i1.595
Setiawan, A. A., Budiman, J., & Prasetyo, A. (2023). Anti-Inflammatory Potency of Mangosteen (Garcinia mangostana L.): A Systematic Review. Open Access Macedonian Journal of Medical Sciences, 11(F), 58–66. https://doi.org/10.3889/oamjms.2023.8746
Simeonova, R., Kondeva-Burdina, M., Vitcheva, V., & Mitcheva, M. (2014). Some In Vitro/In Vivo Chemically-Induced Experimental Models of Liver Oxidative Stress in Rats. BioMed Research International, 2014, 1–6. https://doi.org/10.1155/2014/706302
Sofyantoro, F., Septriani, N. I., Yudha, D. S., Wicaksono, E. A., Priyono, D. S., Putri, W. A., Primahesa, A., Raharjeng, A. R. P., Purwestri, Y. A., & Nuringtyas, T. R. (2024). Zebrafish as Versatile Model for Assessing Animal Venoms and Toxins: Current Applications and Future Prospects. Zebrafish, zeb.2023.0088. https://doi.org/10.1089/zeb.2023.0088
Soosean, C., Marimuthu, K., Sudhakaran, S., & Xavier, R. (2010). Effect of mangosteen (Garcinia mangostana L.) extracts as a feed additive on growth and hematological parameters of African catfish (Clarias gariepinus) fingerlings. European Review for Medical and Pharmacological Sciences, 14(7), 605–611.
Svendsen, E., Føre, M., Økland, F., Gräns, A., Hedger, R. D., Alfredsen, J. A., Uglem, I., Rosten, C. M., Frank, K., Erikson, U., & Finstad, B. (2021). Heart rate and swimming activity as stress indicators for Atlantic salmon (Salmo salar). Aquaculture, 531, 735804. https://doi.org/10.1016/j.aquaculture.2020.735804
Widyarman, A., Lay, S., Wendhita, I., Tjakra, E., Murdono, F., & Binartha, C. O. (2019). Indonesian mangosteen fruit (Garcinia mangostana L.) peel extract inhibits Streptococcus mutans and Porphyromonas gingivalis in Biofilms In vitro. Contemporary Clinical Dentistry, 10(1), 123. https://doi.org/10.4103/ccd.ccd_758_18
Yostawonkul, J., Kamble, M. T., Sakuna, K., Madyod, S., Sukkarun, P., Medhe, S. V., Rodkhum, C., Pirarat, N., & Sewaka, M. (2023). Effects of Mangosteen (Garcinia mangostana) Peel Extract Loaded in Nanoemulsion on Growth Performance, Immune Response, and Disease Resistance of Nile Tilapia (Oreochromis niloticus) against Aeromonas veronii Infection. Animals, 13(11), 1798. https://doi.org/10.3390/ani13111798
Yue, G. H., Wang, L., Sun, F., Yang, Z., Shen, Y., Meng, Z., & Alfiko, Y. (2022). The ornamental fighting fish is the next model organism for genetic studies. Reviews in Aquaculture, 14(4), 1966–1977. https://doi.org/10.1111/raq.12681
Yuvanatemiya, V., Srean, P., Klangbud, W. K., Venkatachalam, K., Wongsa, J., Parametthanuwat, T., & Charoenphun, N. (2022). A Review of the Influence of Various Extraction Techniques and the Biological Effects of the Xanthones from Mangosteen (Garcinia mangostana L.) Pericarps. Molecules, 27(24), 8775. https://doi.org/10.3390/molecules27248775
Zhang, W., Wang, H., Brandt, D. Y. C., Hu, B., Sheng, J., Wang, M., Luo, H., Li, Y., Guo, S., Sheng, B., Zeng, Q., Peng, K., Zhao, D., Jian, S., Wu, D., Wang, J., Zhao, G., Ren, J., Shi, W., … Hong, Y. (2022). The genetic architecture of phenotypic diversity in the Betta fish ( Betta splendens ). Science Advances, 8(38), eabm4955. https://doi.org/10.1126/sciadv.abm4955
Zhao, J., Bao, W. J., Zhang, F. D., Ye, Z. Y., Liu, Y., Shen, M. W., & Zhu, S. M. (2017). Assessing appetite of the swimming fish based on spontaneous collective behaviors in a recirculating aquaculture system. Aquacultural Engineering, 78, 196–204. https://doi.org/10.1016/j.aquaeng.2017.07.008